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Abstract--Orthographic projection transforms a three-dimensional object into its two-dimensional image by a 
mechanism of homogeneous deformation, with infinite shortening along the parallel projection lines. The 
orthographic orientation net is therefore a useful tool for the analysis of rank-2 tensor operations such as 
deformation and displacement. A tensor transforms orthogonal radii of the unit sphere into conjugate radii of an 
ellipsoid, here termed the tensor's ellipsoid. In two dimensions, any symmetric or asymmetric tensor's ellipse may 
be represented by a great circle on the orthographic orientation net or by a Mohr circle, generally in an 'off-axis' 
position. The Mohr circle's points of intersection with its reference axis define the tensor's eigenvectors and 
eigenvalues, which may be real or complex. An asymmetric tensor's eigenvectors are not mutually orthogonal, 
nor do they parallel the principal semiaxes of the tensor's ellipse. These facts are used to classify plane 
deformations. Any rotational deformation may be factored using Mohr circles for polar or additive 
decomposition. 

In three dimensions, a symmetric or asymmetric tensor's ellipsoid may be represented by a graticule on the 
orthonet with the aid of polar decomposition. The two-dimensional tensor and ellipse corresponding to any 
section of the three-dimensional state may be determined from a skiodrome. 

In order to apply rank-2 tensor concepts to heterogeneous deformation, a way of describing the gradients of 
rank-2 tensors (i.e. their variation with position in the heterogeneous tensor field) is needed. A rank-3 tensor 
serves this purpose. 

INTRODUCTION 

Orthographic projection 

Two TYPES of orientation net are commonly used in 
the analysis of geological data. They are the stereonet 
which conserves angle, and the equal-area Schmidt net 
(Phillips 1954). The orthographic net, or orthonet, has 
been available to geologists since the work of Wright 
(1911) but its uses appear to have been confined to 
drawing crystals (Hilton 1917), skiodromes (projections 
of curves of equal velocity in optical minerals, 
Wahlstrom 1951) and block diagrams (Mclntyre & 
Weiss 1956, Ragan 1973, Lisle 1982). 

A block diagram is interpreted by the human eye as an 
oblique view of a solid body in space, commonly a map 
and two orthogonal sections. Actually, the block dia- 
gram is confined to the plane of the figure and its 'sides' 
can be obtained by application of finite homogeneous 
deformations to the map and sections. The effects of 
deformation and tilting are indistinguishable when the 
tilted plane is viewed orthographically. This equivalence 
permits the orthonet to be used in a variety of structural 
applications, not only as a graphical aid to visualization 
but also as a means of discovering algebraic solutions to 
problems (e.g. De Paor 1981a, b). It may prove as 
powerful an analytic tool in the future as the stereonet 
did in the past. 

An orthonet is obtained by projecting a sphere onto 
the plane in such a way that all lines of projection are 
perpendicular to the plane. Its great and small circles are 
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actually ellipses, though the small circles are viewed 
'edge-on' in the equatorial projection of Fig. 1 and 
therefore appear as straight line segments. In full spher- 
ical projection, a plane of dip 8 and strike or is rep- 
resented by an ellipse of axial ratio sec 8 and long axis 
orientation tr (the lower and upper hemisphere parts 
may be distinguished by ornament). A line of plunge ~b 
and trend 0 is represented by a point with polar coordi- 
nates (P cos 4~, 0) equivalent to Cartesian coordinates 
(Pl, Pm) where l, m are direction cosines of the line and 
P is the radius of the net. Furthermore, a vector of 
magnitude V in the direction of the above line may be 
represented by an arrow which 'pierces' the sphere at 
P cos ~b from the centre of the projection and continues 
in the 0-direction to a distance V cos ~ from the centre 
(Fig. 2) (De Paor 1979). 

Deformation nomenclature 

Truesdell & Toupin (1960 p. 243) defined deformation 
as the transformation of a portion of matter from one 
configuration to another. On p. 255, citing Rankine 
(1851) they described strain loosely as the change in 
length and relative direction occasioned by deformation. 
Deformation and strain are synonymous in much of the 
geological literature (e.g. Flinn 1962, Ramsay 1967). In 
this paper the coordinate origin shifts with a material 
point and the reference frame is therefore insensitive to 
homogeneous translation. Deformation here refers to 
any combination of stretch and rotation whereas strain 
refers to any change in relative length (longitudinal 
strain) or relative direction (shear strain). The term 
strain ellipse is a misnomer because the ellipse in ques- 
tion does not describe a change in configuration but 
rather a final configuration. 
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Fig. 3. Stretch and displacement notat ion for a line of initial length 1 
and stretched length I + e. U is the displacement vector; its normal  and 
transverse components  are e and T. P is the line's rotation in radians. 

Fig. 2. Projection of a vector on the orientation net. (V, 0, ~b) are the 
vector 's  polar coordinates.  P is the net ' s  radius. 

In a domain of homogeneous rotational deformation 
let a unit vector I join two material points. The deformed 
equivalent of I is here defined as the deformation vector 
D. Relative to I, its polar coordinates are (S, a) ,  the 
stretch and rotation of I. For the special case of irrota- 
tional deformation,  the deformed equivalent o f t  is here 
defined as the stretch vector S. Its polar coordinates are 
(S, p), the stretch and passive rotation of 1. The 
maximum, minimax and minimum values of S are label- 
led X, Y and Z, respectively (Ramsay 1967, p. 130). 

D, or in the special case S, may be resolved into a 
normal component  N parallel to I and a coplanar trans- 
verse component  T perpendicular to I (Ericksen 1960 p. 
844 uses normal and shear components analogously). 

Natural strain e and extension e are conventionally 
defined as 

= In (S) (1) 
e = S - 1 .  

Elongation e is here defined as 

e = N -  1 (2) 

in accord with Truesdell & Toupin (1960 p. 256) but not 
Ramsay (1967 p. 52). The quadratic stretch A is defined 
a s  

A = S 2. (3) 

The displacement vector U is here defined as the change 
in an initial unit vector I, 

u = D - i (4) 

in general, or 

U = S - 1, (5) 

if the deformation is irrotational (Malvern 1969 used the 
term unit relative displacement). The components of U 
are (e,  T) (Fig. 3). 

The maximum, minimax and minimum values of any 
of the scalar parameters above are hereby termed princi- 
pal values. The corresponding vectors are termed princi- 
pal vectors. 

Relative to the direction of an arbitrary deformation 
vector D, the material in any perpendicular plane before 
deformation will be sheared through an angle q, whose 
tangent 3' is here defined as the geological shear strain of 
I. (Truesdell & Toupin 1960, p. 256, used the symbol Y 
and term shear to denote the decrease in angle between 
any two lines, not necessarily initially orthogonal.)  
Where there is no fear of confusion with infinitesimal 
engineering shear strain (e.g. Malvern 1969, p. 121) or 
finite classical shear strain (e.g. Truesdell & Toupin p. 
267), the prefix 'geological' may be discarded. 

In response to a simple torsion, material may become 
heterogeneously twisted about a discrete straight line. In 
the absence of any other superposed deformation,  the 
angular twist X of a discrete unit vector I is here defined 
as the angular deflection of any vector initially parallel to 
I and the twist strain F is defined as 

F = tan g (6) 

(compare Truesdell & Toupin 1960, p. 298). 
Homogeneous  deformation and displacement are 

types of (rank-2) tensor. I propose to define a Cartesian 
tensor as an operator which transforms orthogonal radii 
of  the unit sphere into conjugate radii of  an ellipsoid 
(three ellipsoid radii are conjugate if the tangent plane at 
any one parallels the other  two). 

Simple examples of tensors, written as rows of column 
vectors, include the identity tensor 

I = [I1 I2 13] 

= 1 

0 

(7) 



Fig. 1. An equatorial orthographic net. The radius is 10 cm. 
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which identifies the base vectors lj (j  = 1,2, 3), the tensor 

M = MI, (8) 

where M is a scalar magnification factor and the rotation 
tensor 

R = [R I R2 R3] 

= ml m2 m3 , 

H 1 n 2  H3 

(9) 

where Rj are an orthonormal triad with direction cosines 
lj, mj, nj. 

In general, V is a tensor if, for all R, VR are conjugate 
radii of an ellipsoid, here termed the tensor's ellipsoid. 
The tensor's ellipsoid is fixed in space, so that, if the 
reference frame is changed from I to R the conjugate 
radii VR appear to be rotated through R -1 to become 
R-1VR. These are the transformed base vectors, V' of 
the new (primed) reference frame, so that 

V'  = R - ~ V R .  (10)  

Thus, the unconventional definition of a tensor proposed 
here leads to the conventional tensor transformation 
rule, equation (10). 

The intimate relationship between a tensor and its 
ellipsoid is fundamental to the method of orthographic 
analysis. This relationship does not appear to have been 
described before,  although Nye (1951 p. 47) and Flinn 
(1979) discussed the special case of a positive definite 
symmetric tensor's representation quadric, and Truesdell 
& Toupin (1960, pp. 250-253 and p. 552) reviewed more 
complicated quadrics which have been used to represent 
symmetric tensors geometrically since the unpublished 
work of Fresnel in 1822. 

If V is non-singular (that is, if its column vectors are 
not coplanar) it has an inverse V -1 which transforms 
orthogonal radii of the unit sphere into conjugate radii 
of V's reciprocal ellipsoid. Therefore ,  V transforms 
conjugate radii of its reciprocal ellipsoid into orthogonal 
radii of the unit sphere. We now define a tensor's left and 
right principal directions as the axial directions of its 
ellipsoid and reciprocal ellipsoid, respectively (this is 
consistent with Truesdell & Toupin 1960, p. 261). It 
should be clear that a tensor must transform its right 
principal directions into its left principal directions, 
there being only one set of lines which are orthogonal 
before and after transformation. 

Every tensor V transforms at least one unit vector R 
without rotation so that VR and R are parallel 
(Thompson & Tait 1867). R is then called an eigenvector 
and the magnitude of VR is the corresponding eigen- 
value. 

In this paper, tensors are named and labelled consis- 
tently according to the physical significance of their 
ellipsoid's principal semi-axes. This rule sometimes per- 
mits a choice of logical names (for example, stress tensor 
or normal stress tensor) but unnecessary new terminol- 
ogy is avoided. 

I, / 

I2 

N I 

['1_ 

N2_ 

Fig. 4. The stretch tensor [S~ $2] transforms the arbitrary umt square 
[11 1~] into a parallelogram. The reference frame is insensitive to the 
translation (bold arrow). Note the equality of the off-diagonal compo- 

nents T t and T~. 

T H E  S T R E T C H  T E N S O R  A N D  E L L I P S O I D  

Two-dimensional  analysis 

For a homogeneous irrotational deformation in two 
dimensions, it follows from the above that the stretch 
ellipse may be defined simply as the deformed shape of 
an initial unit circle and similarly that the stretch tensor 
may be defined as the symmetric tensor whose column 
vectors define the deformed sides of an initial unit 
square. Using the reference axes lj as adjacent sides of 
the initial unit square, the corresponding sides of the 
deformed square may be specified by their stretch vec- 
tors S i. These form the columns of the stretch tensor, 

S = [Sl S2] (11)  

as illustrated in Fig. 4. Each column vector may be 
expanded in terms of its normal and transverse com- 
ponents, 

the transverse components being equal because of the 
irrotational nature of the deformation. Of course the 
shape of a deformed square, and thus the components of 
its stretch tensor, depends on the choice of lj. 

Tensors have a major  advantage over ellipses: the 
parallelograms they describe may be used to 'tile' the 
plane, permitting rapid correlation of pre- and post- 
deformation coordinates. 

Choi & Hsfi (1971), De Paor (1981a, b) and Means 
(1982) have described a Mohr circle for stretch. The 
Mohr circle (Fig. 5) is centred at ½(N1 + N2) and passes 
through the points (Nx, T) and (N2, - T). The attitude 0 
of the semi-major stretch X is given by 

2T 
tan 20 - (13) 

N1 - N2 

while the principal stretches X, Y are respectively 

½(Ul + U2) ++- ½(Ut - N2) see 20. (14) 
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Fig. 5. A Mohr construction for stretch. See text for details. 
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Fig. 6. (a) Orthographic construction for stretch. S is the radius vector 
at q5 to the X-direction. It was initially at 0 to X. (b) Definition of 
angular shear ~0 in terms of the passive rotations p~ and P2. See text. (c) 
Graphic solution of the tensor transformation rule, for a rotation of the 

reference frame through A0. 

A much simpler representation of stretch is achieved 
with the aid of the or thonet  (Fig. 6). An elliptical great 
circle to represent the deformed state is chosen by 
rotating the net axis through 0 and tilting the primitive 
circle through the arcsecant of X / Y .  Since the radius of 
the net now represents the principal stretch X, a circle of 
radius ~ m a y  be drawn to represent the initial state. 
The stretch in the direction at ~b to the X-direction after 
deformation is obtained by setting off a true angle ~b 
from X and reading the corresponding radius of the great 
circle, this being equivalent to solving the polar equation 
of an ellipse, 

A -1 = AX 1 COS 2 ~ "1- A y  1 sin 2 ~b. (15) 

The stretch vector corresponding to the direction ini- 
tially at 0 to X is obtained by setting off 0 as if it were a 

pitch on the great circle (Fig. 6), this being equivalent to 
solving 

A = AxCOS 2 0 + Avsin 2 0 (16) 

(Ramsay 1967, p. 65). The angle Pl, through which the 
0-direction is passively rotated while stretching, and 
angle P2, through which some direction rotates to 
become the 0-direction, can be read off the construction. 
Their  sum gives the angular shear $ of the 0-direction 
because, for irrotational deformation, the reciprocal 
rotation of any direction is numerically equal to the 
forward rotation of a perpendicular direction (Ramberg 
1975). 

The stretch tensor S is represented in Fig. 6. Its 
Cartesian components are obtained by projection onto 
the directions o f l t  and 12 which make true angles of 0 and 
0 - zr with X. The tensor's reference frame is rotated 
through an angle A0 by rotating the column vectors S i 
through a pitch angle of A0 on the chosen great circle, 
which is equivalent to solving equation (5). If the rota- 
tion were applied to the vectors Sj but not their reference 
axes lj, the deformation described would be rotational 
(see below). 

The relationship between the orthographic and Mohr- 
circle constructions is illustrated in Fig. 7, as presented 
to the Tectonic Studies Group A.G.M. ,  Nottingham, 
1979. The basic geometric features appear in the work of 
De la Hire (1685, see Fig. 7b) although the latter author 
was clearly unaware of the mechanical implications. 
Figure 7 enables one to derive, directly, the equations of 
the Mohr circle for stretch (Choi & Hs(i 1971, De Paor 
1981a, b, Means 1982), identify the correct sign conven- 
tions and locate the Mohr circle's pole (e.g. Malvern 
1969, p. 110). Figure 8 justifies the use of 'off-axis' Mohr 
circles for the analysis of rotational deformations (De 
Paor 1981a, b, Means this issue). 

In the case of pure shear, the principal stretches are 
reciprocal and therefore the principal natural strains 
may be written 

= In (X) (17) 
- E  = In ( l /X).  (18) 

Thus the Mohr circle for stretch is centred at cosh (~) 
and has a radius of sinh (~). The stretch tensor may 
therefore be written in the format 

[cosh (e) + sinh ( , ) cos  20 sinh ( , ) s in  20] 
S (19) 

=Lsinh (~) sin 20 cosh (e) - sinh (E) cos 203 

for a reference frame at 0 to the principal directions (Fig. 
9). The product moment  of S is seen to be equivalent to 
Elliott 's (1970) shape factor. The importance of this 
format is that the tensor is described entirely in terms of 
its own principal vectors, without reference to parame- 
ters of the reference axes, which are unknown but 
probably very complex functions of the natural strains of 
those axes. 

Three-dimensional analysis 

The three-dimensional Mohr construction (e.g. Ram- 
say 1967, p. 150) is cumbersome and so is rarely used. 
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Fig. 7. Ca) Rela t ionship  be tween  M o h r  and or thographic  construct ions  for stretch.  Arcs  of circles are of radius X and Y, The 
inscribed right-angle defines the principal directions. (b) Extract  f rom De la Hire (Sectiones Conicae in Novem Libros 

Distributae, 1685). FHI is the Mohr  semicircle for the ellipse AHB.  H is opposi te  the pole of the M o h r  circle. 

Fig. 8. Or thograph ic  and M o h r  construct ions for rotat ional  deforma-  
tions, o~, which is negative in this case, is the rota t ion exper ienced pr ior  
to stretch (dashed axes). The  M o h r  circle is 'off-axis '  (Means  this issue) 

relative to the bold reference frame.  

I T 
Fig. 9. Mohr  circle for  constant  area stretch expressed in te rms of  the 

principal natural  strain e. 

The analogous orthographic construction for stretch in 
three dimensions is developed by considering first the 
theoretical case where the stretch along X is unity and 
the shortening along Z is infinite, so that the stretch 
ellipsoid becomes squashed into the XY-plane and 
occupies the area bounded by the ellipse of axial ratio 
X / Y  (Fig. 10). Now the stretch of the arbitrary unit 
vector I (a radius of the net in this case) is obtained by 
moving the tip of I along its latitude line till it is brought 
closer to the X-axis by a factor Y. 

To generalize the above case, we first introduce a 
non-zero Z, the effect of which is to raise the vector S, 
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Fig. 10. (a) Orthographic construction for the special case of infinite compression along Z. (b) Construction for finding S in 
(a). Dashed lines are parallel to radii and latitude lines of the net. (c) Introduction of a finite stretch Z gives S a plunge cb as 

determined in Fig. 11. 

Fig. 11. Supplementary construction for determining the plunge ~b in 
Fig. 10(c). Fig. 10(b) is repeated for the XY- and XZ-sections. Then the 

plunge & is chosen to be consistent with a 90 ° rotation about X. 

s ; 

,7 

$2 2 

Fig. 12. (a) General  construction for the case of a non-unit  principal 
stretch X. (b) Parallelepiped representing the three-dimensional  ten- 

sor S. 

the deformed equivalent of I, out of the Xg-plane into 
some general orientation of plunge 4~. The projection 
P(S) of S back onto the Xg-plane is unaffected by the 
numerical value of Z but the plunge of the point where S 
'pierces' the unit sphere must be determined in order to 
distinguish S from all other vectors whose projections 
coincide with P(S). This is done in Fig. 11 using a 
supplementary construction. For full generality, we 
must also permit non-unit values of X in which case the 
initial condition is represented, not by the sphere of 
which the net is a projection, but rather by a concentric 
sphere of radius ~ (Fig. 12). 

Application of the above constructions to any ortho- 
normal triad lj yields the column vectors Sj of the three- 
dimensional stretch tensor S. This tensor is represented 
by a projected parallelepiped in Fig. 12(b). 

The stretch ellipsoid and deformation ellipsoid are 
indistinguishable for the special case of irrotational 
deformation. In general, however, it is necessary to 
distinguish two stretch ellipsoids associated with each 
rotational deformation ellipsoid (see below). 

SURFACES RELATED TO THE STRETCH 
ELLIPSOID 

The displacement ellipsoid 

The set of all displacement vectors U, which join 
points on the unit sphere to their deformed positions on 
the concentric stretch ellipsoid are themselves distri- 
buted on an ellipsoid, the displacement tensor's ellipsoid 
(Truesdell & Toupin 1960, p. 247 used the term displace- 
ment gradients tensor; Malvern 1969, p. 124 referred to 
the unit relative displacement matrix, alternatively 
named the Jacobian matrix). The tensor's column vec- 
tors may be expanded as follows, 

U = [ U 1  U2 U3] 

T13 'gl TI2 

= T21 82 T23 • 

T31 T32 w-e3 J 

(20) 

Principal displacement vectors and principal extensions 
are equal in magnitude for irrotational deformations, 
but care should be taken not to confuse extensions and 
elongations in general. 

The orthographic construction for displacement is 
similar to that for stretch but now the axes may differ in 
sign (Fig. 13). For example, if the principal extension Uy 
is negative (representing a contraction) and is smaller in 
magnitude than Ux, the displacement of a unit vector 
initially at 0 to the X-direction is determined by setting 
off a pitch of - 0  and reading the corresponding radius of 
the displacement ellipse (Fig. 13b). Displacement vec- 
tors in the vicinity of Ux have outward-directed elonga- 
tions while those close to Uy are inward-directed. In two 
dimensions, a unique pair of directions suffers no exten- 
sion in the current increment of infinitesimal deforma- 
tion, representing directions which rotate without 
stretching. Another unique pair of directions will have 
suffered no cumulative extension. 

For infinitesimal irrotational displacements, the 
approximations 

8 = e (21) 
T = p (22) 

Ip l l  = Ip21 (23 )  
Ip l + Ip l = • (24)  
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Fig. 14. Orthographic construction for the area stretch ellipse. A x and 
A z are the principal area stretch vectors. I is an arbitrary pole to a plane 
in the initial state. The trace of the plane is labelled 7~P before 
deformation and f'P after. A is the area stretch vector for this plane and 

is perpendicular to f'P. 

Ux 

" Le 

Uy 

(b) 

Fig. 13. (a) Orthographic construction for the displacement ellipse. U, 
represents lengthening and Uy shortening. I is an arbitrary initial unit 
vector at 0 to the Ux-direction. U is obtained by setting off the angle - 0 
on the great circle representing the displacement ellipse. Alternatively 
a line of latitude (dashed) may be drawn through +0 on the perimeter 
and its intersection point on the ellipse recorded. (b) A set of four 
displacement constructions superimposed on the radii of the unit 
circle. The corresponding displacement vectors touch the stretch 

ellipse. 

become valid, so that equation (20) for the two dimen- 
sional case becomes, 

[el IT]. (25) 
U =  iT e2J 

This tensor is here termed the infinitesimal displacement 
tensor. The name infinitesimal strain tensor is conven- 
tional. 

For a more detailed discussion of displacement fields, 
the reader is referred to Ramberg (1975). 

The area stretch ellipsoid and tensor 

The area stretch A of a plane of initial pole I is hereby 
defined as the final area of an element of unit initial area. 

For the principal planes of an irrotational deformation,  
it is clear that we may construct a tensor iAo0 0] A =  A r  0 

0 Az [ o0 o] 
= Z X  , 

0 

(26) 

where, for example, Ax is the area stretch of the plane of 
initial pole I x.  If we define volume stretch V as 

V = XYZ (27) 

then equation (26) becomes 

A = VS -1. (28) 

The tensor A is here defined as the area stretch tensor. 
Its ellipsoid, from equation (28), is proportional to the 
reciprocal stretch ellipsoid. 

For irrotational deformations, the principal and recip- 
rocal principal directions are parallel. Thus the principal 
area stretch vectors (the column vectors of A in diagonal 
form) are perpendicular to the corresponding planes 
before and after deformation. However,  it should be 
clearly understood that, in the general non-diagonal 
case of any irrotational deformation, the column vectors 
of A indicate the magnitudes of the area stretches of the 
initial reference planes and are oriented perpendicular 
to those planes after deformation (Fig. 14). 

The quadratic stretch ellipsoid and tensor 

Consider the unit vector at 0 to the principal stretch 
vector X in the XY-plane. Choosing the principal direc- 
tions as reference axes, the stretch vector for the 0-direc- 
tion may be written 

[; 01 rcos 01 
sin0  [0 O] s,n0  

The stretch S is therefore given by Pythagoras, 

S = V'X 2 cos 2 0 + Y~ sin 2 0 (30) 

or, in terms of quadratic stretch, 

A = AxCOS 2 0 + Agsin 2 0. (31) 
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Fig. 15. Orthographic construction for the quadratic stretch ellipse. 
See text for full explanation. 

Note that 3'1 and T2 are the shear strains of the initial 
directions which become the 11 and 12-directions after 
deformation. Expansion to three dimensions now 
involves no unknown areal factors, 

F ) ' i I  )' 21'~/12 )'31"Y137 
C • /),T1T21 )`21 ) '31T23/ (37) 

), 1,32 J 
and all parameters refer to orthogonal reference direc- 
tions in the deformed state (for example, 3'21 is the 
component in the 12-direction of the shear strain on the 
plane of final pole 11). 

The classical strain tensor 

The magnitude of the normal component N of S is given 
by 

N = (Xcos 0) cos 0 + (Ysin 0) sin 0 (32) 

or  

N = Nx  cos 2 0 + Nr  sin 2 0 (33) 

since principal stretches are entirely normal for irrota- 
tional deformations. 

Equations (31) and (33) are identical in form and 
prompt the following analysis. Let  us construct on the 
orthonet an ellipse with semi-axes Ax and Ay (Fig. 15). 
These semi-axes are the principal vectors of Finger's and 
Green's tensors, which are indistinguishable from one 
another for irrotational deformation (Truesdell & 
Toupin 1960, p. 264). We here use the name quadratic 
stretch tensor and the symbol C. The columns of C, the 
quadratic stretch vectors Cj, exist in a quadratic refer- 
ence frame, not in physical space, but their components 
may be expanded (Ramsay 1967, p. 71), 

c = [cl  C2l 

= [ ),1 A3T] (34) 
A3T )`2 J 

where Y is the common magnitude of the shear strains of 
the I t and 12 reference vectors and A 3 is the area stretch 
of the plane of initial pole 13 . 

The reciprocal quadratic stretch tensor and ellipsoid 

The tensor C is useful for the analysis of two-dimen- 
sional stretch at constant area but the equivalent three- 
dimensional form involves unknown area stretches of 
the reference planes and these do not vanish even when 
volume is conserved. The reciprocal quadratic stretch 
tensor c is considerably more useful, 

= [) , i '  (35) c L),¢v, j 

(e.g. Ramsay 1967, p. 73). Since this is a symmetric 
tensor 

"y1/'Y2 = AI/A 2. (36) 

It is possible to define a quadratic displacement tensor 
and ellipsoid, the latter being the locus of the vectors 
which join points on the surface of the initial unit sphere 
to the corresponding points on the quadratic stretch 
ellipsoid. Any set of conjugate radii of this quadratic 
displacement ellipsoid may form the columns of the 
quadratic displacement tensor which is here denoted 2E 
since it is twice the magnitude of the classical strain 
tensor E (e.g. TruesdeU & Toupin 1960, p. 266). How- 
ever, there seems to be little merit in such an esoteric 
exercise and the use of classical strain tensors, which is 
widespread in the engineering literature, would appear 
to have served merely to render strain studies more 
complicated than they need be. There may be some 
merit in defining quadratic measures of area stretch 
(Truesdell & Toupin 1960, p. 263) but the linear equiva- 
lent introduced in the previous section on area stretch is 
arguably preferable in practice. 

The natural strain ellipsoid and tensor 

The natural strain ellipsoid is hereby defined as an 
ellipsoid oriented parallel to the stretch ellipsoid with 
semi-axes proportional to the natural logarithms of the 
principal stretches, ex, Er and ez. The ellipsoid is thus 

the natural strain tensor H whose associated with 
diagonal form is 

° °0] H = e r • ( 3 8 )  

0 e z 

It must be emphasized that natural strains, the 
logarithms of linear stretches, are not distributed on an 
ellipsoid. Only the principal natural strains are so distri- 
buted, just as, in the case of displacement, only the 
principal extensions are radii of the displacement ellip- 
soid. The remaining radii of the natural strain ellipsoid 
are unknown and probably complex functions of the 
corresponding natural strains. Truesdell & Toupin 
(1960, p. 259) defined the tensor H as 

H = ½ In ( C )  ( 3 9 )  

but gave no simple method for determining the com- 
ponents in a general reference frame, given the com- 
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ponen t s  of  C. Neve r the l e s s ,  for  the  p u r p o s e  of  the  

fo l lowing analys is  (which  was first p r e s e n t e d  to  the  
Tec ton ic  S tud ies  G r o u p  A . G . M . ,  N o t t i n g h a m ,  1979) it 
is sufficient  tha t  the  na tu ra l  s t ra in  t e n s o r  m a y  be  ex- 
p re s sed  in t e rms  of  its p r inc ipa l  vec tors .  

The  d i agona l i z ed  s t re tch  t e n s o r  S m a y  be  f a c t o r e d  in to  
an i so t rop ic  and  p l ane  c o m p o n e n t ,  

[ o1[ o1[  l X 0 0 Y 0 0 Y 0 0 

0 Y = 0 Y 1 0 • (40) 

0 0 0 0 0 Z / Y  

Simi lar ly ,  the  na tu ra l  s t ra in  t enso r  I t  m a y  be  exp res sed  

as the  sum of  an i so t rop ic  na tu ra l  v o l u m e  s t ra in  and  a 
b iaxia l  na tu ra l  s t ra in  

o Oo] [i oo 1 Ey = fly 0 
0 e z 0 ~v 

[EX--EY0 0 J 
+ 0 0 0 • (41) 

0 0 E Z - -  ey 
In p rac t i ce ,  ez - er  will be  nega t ive  in va lue .  The  
d i agona l  c o m p o n e n t s  o f  the  b iax ia l  pa r t  m a y  be  recog-  
n ized  as the  Ca r t e s i an  c o o r d i n a t e s  r e p r e s e n t i n g  the  
d e f o r m a t i o n  on the  F l inn  p lo t  (1978). Le t  (~, K) be  the  

p o l a r  c o o r d i n a t e s ,  m e a s u r e d  f rom the s e m i - m i n o r  axis 
of  the  na tu ra l  s t ra in  e l l ipso id ,  so tha t  F l inn ' s  p a r a m e t e r  

k = tan  (K). (42) 

By d rawing  a s t e r e o v e c t o r  ( D e  P a o r  1979) of  m a g n i t u d e  
at  an angle  K to the  Z -d i r ec t ion  in the  XZ-p lane ,  we 

c o m b i n e  the  F l inn  p lo t  wi th  a s imple  r e p r e s e n t a t i o n  of  
the  e l l ipso id ' s  o r i e n t a t i o n  in space  (Fig.  16). T h e  shape  
of  the  e l l ipso id  is i m m e d i a t e l y  ev iden t  f rom this d i a g r a m ,  
since K is less than  45 ° in the  o b l a t e  field and  g r ea t e r  than  
45 ° in the  p ro l a t e  field.  T h e  po in t  f rom which K is 
m e a s u r e d  is the  po l e  to the  XY-plane o f  the  d e f o r m a t i o n .  

The structural sk iodrome 

To aid analysis of the relationship between the state of 
deformation in three dimensions and the consequent 
stretch observed in an arbitrary section plane, an analogy 
may be drawn between the stretch ellipsoid of structural 
geology and the indicatrix of optical mineralogy (e.g. 
Wahlstrom 1951). The velocity with which a ray travels 
through a mineral depends upon the direction of vibra- 
tion in the associated wavefront. The latter vibration 
may be factored into two 'permitted' components whose 
velocities are inversely proportional to the radii of the 
indicatrix to which they are parallel. These velocities 
may be recorded along the direction of the ray and the 
analysis repeated for all rays emanting from a source so 
as to build up a double surface called the ray velocity 
surface. A direct structural analogue is not appropriate 
because the relationship between ray velocities and 
refractive indices is inverse and because light rays and 
wavefronts are conjugate, not orthogonal. However 

Ex-Ey 

I 

(a) 

~y -~'Z 

b) 

Fig. 16. (a) The natural strain ellipse's biaxial component super- 
imposed on the deformation plot. The bold vector is the position 
vector of the point representing the corresponding stretch ellipsoid on 
the plot. Its polar coordinates are (~, K). (b) Representation of the 
stretch ellipsoid on the orientation net. The stereovector is the projec- 
tion of the vector in (a). Z is the pole to the XY-plane of the stretch 

ellipsoid. 

(a) 

(b) 

x 

Y 

Fig. 17. (a) The sectional stretch surface with the front upper quadrant 
of the outer shell removed to reveal the inner shell. Bold lines mark the 
principal directions and the poles to the circular sections, O~ and 02. 
The traces of the surface in the principal planes are labelled § where 
circular and -- where elliptical. They all appear elliptical in this 
perspective. (b) The structural skiodrome, an orthographic projection 
of the surface in (a). P is the pole to a plane. The contour values at P 
give the semiaxes of the corresponding sectional stretch ellipse. The 
great circles which are tangent to the contours at P (bold cross) 

intersect the plane in the sectional stretching directions. 



266 D . G .  DE PAOR 

Fig. 18. Loci of equal sectional stretch ratio on the orthonet. The 
contours rise from unity in the 'optic axis' directions to X/Z in the 

Y-direction. Note the similarity to isochromatics in mineral optics. 

Wahlstrom (1951) described another surface called the 
index surface, whose radii record the maximum and 
minimum refractive indices in the plane to which they 
are perpendicular. This surface has the same type of 
shape as the better known ray velocity surface; it is a 
double surface whose inner and outer parts touch in 
optic axial directions and whose principal sections com- 
prise circles and ellipses. In the stretch ellipsoid, by 
analogy, the double surface will be called the sectional 
stretch surface (Fig. 17). The pole to an arbitrary plane 
cuts this surface in two lengths equal to the semi-major 
and semi-minor axes of the stretch ellipse in that plane. 
An orthographic projection of the surface is called the 
structural skiodrome, by an analogy with the optical 
skiodrome (Fig. 17) as defined by Bates & Jackson 
(1980, p. 586). The lines drawn on the skiodrome are 
contours of the sectional stretch surface and, therefore, 
they give the stretch data required for a plane whose pole 
is marked upon the orthonet. They also indicate the 
principal directions in this section as illustrated by the 
Biot-  Fresnel construction of Fig. 17. By superimposing 
on the skiodrome a great circle of poles to section planes, 
the shape of an apparently folded lineation on a cylindri- 
cal fold surface may be analysed (cf. Sanderson 1974). 
It is seen, for example, that the most intense develop- 
ment of stretching lineation as indicated by boudin 
formation, need not coincide with the most intense 
expression of apparent lineation which is controlled by 
the sectional stretch ratio. 

An analogy may be drawn also between the iso- 
chromatic surfaces of the biaxial optical figure and the 
distribution of axial ratios among the sectional ellipses of 
the deformation ellipsoid. This analogy is not complete, 
because interference colours depend on optical path 
differences, not ratios. However, the form of the loci of 

equals sectional stretch ratio on the orthonet (Fig. 18) is 
quite similar to that of the biaxial figure (without the 
isogyres). 

T H E  D E F O R M A T I O N  T E N S O R  A N D  ELLIPSOID 

Polar decomposition 

Two types of deformation ellipsoid may be distin- 
guished on the basis of the relationship between eigen- 
vectors (directions of no rotation) and principal stretch 
vectors (maximum, minimax and minimum stretch 
directions). When these two sets of vectors are real and 
parallel to each other, they define the semi-axes of the 
stretch ellipsoid (Fig. 19a) which is the deformation 
ellipsoid for the special case of irrotational deformation. 
The orthographic and Mohr constructions for stretch 
have been described already. A 'rule-of-thumb' for the 
construction of the two-dimensional Mohr circle is that 
one column vector of the stretch tensor is rotated 
through 90 ° and then joined to the other. The Mohr 
circle is drawn on that join as diameter. Note that there 
are two equally valid implementations of this rule, as 
illustrated in Fig. 19(c) and (d) for the simple 
diagonalized case. 

The second type of deformation ellipsoid is obtained 
from the unit sphere by a combination of stretch and 
rigid rotation. The principal vectors and eigenvectors of 
such a deformation do not coincide; indeed the latter 
vectors may be complex. 

In order to treat rotational deformation as a two- 
dimensional phenomenon, we assume that the rotational 
component R acts about the le reference axis and that the 
minimax stretch Sy acts along I e. The deformation tensor 
may be represented by an orthographic construction 
(Fig. 19e) or by an 'off-axis' Mohr circle; the simple case 
of a diagonalized stretch component is illustrated in 
Figs. 19(f)-(h). Again there are two valid implementa- 
tions of the above rule. Clearly, in either case, the Mohr 
circle is rotated about the origin by an angle to equal to 
the rigid rotation component of deformation. Means 
(this issue) has proposed an alternative rule which effec- 
tively produces the transpose of the above construction 
(i.e. its reflection in the 45°-direction). Using Means' 
approach (Fig. 19h) double angles measured clockwise 
on the Mohr circle correspond to single angles measured 
clockwise in physical space. However, a clockwise com- 
ponent of rigid rotation is represented by counter- 
clockwise deflections of the Mohr circles off their axes. 

In a general reference frame in the XZ-plane, the 
deformation tensor D may be written 

D = [D 1 D3] 

= [  NIT1 N3T3] " (44) 

This may be decomposed into the rigid rotation R 

[cos to - s in  ~ ]  (45) 
R = [sin to cos 
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Fig. 19. (a) Orthographic construction for irrotational stretch. The tick marks indicate the stretched lengths of the sides of 
the square in (b). (c) Mohr circle for stretch obtained from the principal stretch vectors (the sides of the rectangle in this 
case). The long side of the rectangle is rotated through 90 ° and then joined to the short, the Mohr circle being constructed 
on this join. (d) An alternative construction to (c). Here,  the short side of the rectangle has been rotated while the long side 
remains fixed. (e) Orthographic construction for stretch and rotation through an angle co. The tick marks again represent 
the stretch vectors for the sides of the square in (b). (f) Mohr circle constructed as in (c). (g) Mohr construction as in (d). (h) 

Means '  convention (this issue) for determining the attitude of the Mohr circle (see text). 
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Fig. 20. (a) Mohr circle for the deformation tensor in a general reference frame, drawn as in Fig. 19(c). The circle's central 
axis (short line) is at oJ to the reference axis. (b) Removal of the rotational component from (a) yields the Mohr circle for 
the right stretch tensor (dashed parallelogram). (c) Application of the rotational component w to the initial unit square yields 
the tensor R. (d) Application of the left stretch tensor (dashed parallelogram) to the tensor R of (c) yields the deformation 
tensor ~R (solid parallelogram). The left stretch tensor shares the Mohr circle of (b) but touches it at a point 2w clockwise 
(bold arc). (e) Orthographic construction for right polar decomposition. The arbitrary initial direction (light line) is first 
stretched (dashed line) and then rotated to S. (f) Left polar decomposition corresponding to (e). The initial line is first 

rotated through ~o and then stretched to S. 

fo l lowed  by  (i .e.  p r e m u l t i p l i e d  by)  the  left  s t re tch  t enso r  

D = SR. (46) 

This  d e c o m p o s i t i o n  is bes t  i l lus t ra ted  on a M o h r  d i a g r a m  
(Fig.  20). F i rs t  the  d e f o r m a t i o n  vec to r  D~ is r o t a t e d  to 
the  new pos i t ion  D~ with c o o r d i n a t e s  ( -  T3, N3). T h e n  
the  M o h r  circle  is cons t ruc t ed  so tha t  D~ and  D1 are  
d i ame t r i ca l l y  oppos i t e .  T h e  r igid ro t a t i on  is r e p r e s e n t e d  
by  the  pos i t ive  c lockwise  def lec t ion  o f  the  M o h r  circle 

f rom the  11 r e f e rence  axis. Thus ,  ~o m a y  be  ca lcu la ted  
f rom the  ra t io  of  the  coo rd ina t e s  of  the  c i rc le ' s  cen t re ,  

t an  w -  T 1 -  7"3 (47) 
N1 + N 3  

The  c o m p o n e n t s  of  S are  o b t a i n e d  by p ro j e c t i ng  D1 and 
D~ on to  a cen t ra l  axis of  the  M o h r  circle ,  which is 
equ iva l en t  to  solving 

= D R  t. ~-  ( 4 8 )  
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As an alternative to the left-polar decomposition D = SR 
described above, the tensor may be decomposed into the F 
same rotation R postmultiplied (i.e. preceded) by the = [cos 
right stretch tensor S, 

D = RS.  (49)  

Comparing equations (48) and (49), it is clear that 

= R S R  t. (50)  

Thus, the right stretch and left stretch ellipses are identi- 
cal in shape and the difference in their orientations 
equals the rotational component of deformation (Fig. 
20). The right stretch ellipse has the same shape as the 
deformation ellipse but its axes in ascending order paral- 
lel the axes in descending order of the reciprocal defor- 
mation ellipse. The left stretch ellipse has the shape and 
orientation of the deformation ellipse but differs in the 
locations of material points on the elliptical outline. A 
rigid rotation of the unit circle must be applied first, in 
order to obtain congruence with the deformation ellipse. 

Having determined the above decompositions, two 
orthographic constructions may be employed for the 
analysis of rotational deformations (Figs. 20e and f). 
These apply to any rotational deformation. However, 
the special case of simple shear deserves to be considered 
more fully. This is done in the next section. 

Simple shear 

We define simple shear deformation as 

O = [ D a  Oc] 

[ :  1]  51, 
where a is the tectonic transport direction and c is the 
pole to the shear plane. The symbols a, c and the format 
a-horizontal, c-vertical are rooted in the geological liter- 
ature and so are preferred to 1, 3 in this case. Ramsay & 
Graham (1970) measured angles both clockwise o f t  and 
counterclockwise of a; in this paper all angles are 
measured clockwise of c. In Fig. 21(a), a line is drawn at 
a relative hade of to. Clearly this material line was 
initially at - to  and is a line of unit stretch. Of course, the 
second direction of unit stretch coincides with a. The 
obtuse angle 2V0 between the initial unit stretch direc- 
tions becomes an acute angle 2V after deformation and 
the acute initial angle, 2V becomes numerically equal to 
2V0. The initial (right) and final (left) principal stretch 
directions must bisect 2V0 and 2V, respectively; there- 
fore 

V0 = 45 ° + to/2 (52) 
V = 45 ° - to/2. (53) 

Thus, the initial semi-major axis lies at a hade of Vand is 
rotated through to to an attitude V0. Since the stretch 
component of deformation does not rotate the principal 
directions, to must be the rigid rotation component. 
Therefore, equations (45) and (48) yield 

t o +  3'sinto s in~o] r  costo sinww] 
sin to cos [ - s i n  to cos 

(54) 

while equations (45) and (50) yield 

D = R S  

= ~ COS to 

L - s in  to 
  n lrcos  sin  l 
cos wj [_sin to cos to + 3' sin to 

(55) 

The Mohr construction for simple shear (Fig. 21b) may 
be used to determine the stretches and rotations of 
arbitrary directions in the initial or final state but care 
must be taken to employ the correct sign convention. 
Thus, the stretch S and rotation a of a direction of initial 
hade 0 are obtained from the polar coordinates of a point 
20 counterclockwise of the Cartesian point (% 1) on the 
Mohr circle. An expression for the stretch follows from 
the geometry of the figure, 

S = X/{sec 2 to + tan 2 to + 2 sec to tan to cos 2(V - 0)}. 

(56) 

The orientation of the corresponding direction after 
deformation is arctan (tan 0 + 3') (Ramsay 1967, p. 
88). The reciprocal deformation ellipse, tensor and 
Mohr circle are obtained by reflection in the c-axis. 
Therefore, the reciprocal stretch S -1 of a direction of 
final hade 0 is obtained by setting off 20 clockwise from 
(% 1) on the Mohr circle of Fig. 21(b). 

The principal stretch vectors of simple shear deforma- 
tion, X and Z may be derived from a dyadic circle 
(Durelli et al. 1958), a circle concentric with the Mohr 
circle but passing through the origin (Fig. 21c). The 
intersections of a horizontal line through (0, 1) with the 
dyadic circle define the principal stretches as follows, 

X = tan V0 (57) 

Z = tan V 

(see Thompson & Tait 1867, Treagus 1981). Thus, the 
polar coordinates of the semi-major stretch X for exam- 
ple, may be written (tan V0, V0). 

The eigenvectors of simple-shear deformation coin- 
cide with the a-axis, as indicated by the tangency of the 
Mohr circle to the c-axis. This reflects the fact that in 
simple shear, there is really only one direction of no 
rotation in the XZ-plane and that is the direction of the 
a-axis. In any plane other than the XZ-plane, simple 
shear will resemble transpression or transtension, 
depending on the sign of the area stretch. Thus, the 
critical feature of simple shear in general is the coinci- 
dence of the eigenvectors with the shear plane. 

Classification of  rotational deformations 

So far, we have discussed three special cases of defor- 
mation: pure shear, simple shear and rigid rotation. 
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Fig. 21. Geometric features of simple shear. (a) a is the shear direction and c the pole to the shear plane. 21/0 is the initial 
obtuse angle between the circular sections of the deformation ellipsoid and 2V is its deformed equivalent. The dashed and 
solid crosses represent the initial and final principal stretch directions. The Mohr circle for simple shear (b) touches the 
c-axis. S is the stretch of an arbitrary direction initially at O to the c-axis. S '  is the reciprocal stretch of the direction finally at 
0 to c. The dyadic circle for simple shear (c) is concentric with the Mohr circle hut passes through the origin. Its inscribed 
right-angled triangle defines the principal directions and its hypotenuse is divided by the c-axis into lengths X and Z. These 

geometric features follow from the corresponding features of the Mohr circle as shown. 

These may be considered end-members of a continuous 
series of plane deformations of which five types may be 
labelled pure shear, sub-simple shear, simple shear, 
super-simple shear and rigid rotation (Fig. 22). Note 
that this classification is entirely independent of the 
statistics of Matthews et al. (1974), but is consistent with 
the classifications of Ramberg (1975) and Means et al. 

(1980). 
For consistency, the Mohr circle for pure shear is 

centred on the vertical axis in Fig. 22. The sub-simple 
shear circle cuts that axis in two points representing two 
real but non-orthogonal eigenvectors in the XZ-plane. 
Points counterclockwise of the vertical represent direc- 
tions which have suffered counterclockwise rotation in 
the physical plane. The simple shear case is the boundary 

between such sub-simple shears and the class of super- 
simple shears, shears involving more rotation than is 
appropriate to simple shear. The eigenvectors in the 
XZ-plane of super-simple shear are complex since all 
lines really suffer some rotation. 

If the final state of finite deformation is achieved by 
identical increments of displacement, the five classes of 
deformation will be clearly distinguished by their zones 
of lengthened-shortened radii (Ramsay 1967, p. 114). It 
should be noted that superposed pure shears with differ- 
ent X-directigns always yield a net sub-simple shear 
while superimposed simple shears of the same sense, 
with different a-directions always produce net super- 
simple shear. Also, a pure shear acting across the plane 
of simple shear is equivalent to a sub-simple shear. 
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Fig. 22. The five classes of rotational deformation represented by 
tensors (a) and Mohr circles (b). 

As an example of the application of the above theory, 
D. Sanderson (pers. comm.) has suggested considering 
the state of deformation in the hanging wall of a thrust 
sheet as it encounters a ramp. As the sheet begins to 
climb the ramp, the state of deformation may be 
expected to change from pure shear to sub-simple shear 
to simple shear. Then as the sheet mounts the top of the 
ramp, the rotational component of deformation may 
increase till super-simple shear is achieved. Thus, an 
early slaty cleavage developed during the climb may 
become crenulated when it passes from the zone of 
lengthening into the zone of shortening. As a second 
example, a combination of sub-simple and super-simple 
shear may achieve compatibility at a ductile shear zone 
termination (D. Sanderson, pers. comm.). 

Three-dimensional analysis 

Relative to an arbitrary reference flame I the three- 
dimensional deformation tensor may be written 

D = [01 D2 031. (58) 

This may be subject to left or right polar decomposition, 
an orthographic construction for both of which is illus- 
trated in Fig. 23. In order to display the rotational 
component of deformation, the surface of the initial 
sphere was marked with lines of latitude and longitude. 
These were first rotated into an oblique orientation by 
application of the tensor R. Then the graticule was 
stretched into the shape of the left stretch ellipsoid. The 
same net effect would have been achieved by applying 

the right stretch ellipsoid to the Rt-directions and then 
applying the tensor R to the resultant graticule. The 
construction may be used to determine the deformed 
state of an arbitrary initial direction by applying the 
rotation using standard orientation net techniques and 
then treating the problem as for stretch (of course, the 
graticule of latitude and longitude lines need not be 
drawn in practice). 

The orthographic construction for simple shear in 
three dimensions is particularly elegant (Fig. 24a). The 
pole to the shear plane c is aligned with the north axis of 
the net so that the shear plane contains east-west and 
up-down. It must be clearly understood, therefore, that 
the construction represents the simple shear deforma- 
tion ellipsoid viewed along the tectonic transport direc- 
tion a (the above usage of 'north', etc. will not be 
continued, as the geographic poles may plot anywhere 
on the net). Viewed in this direction, the deformation 
ellipsoid always looks like a projected sphere because all 
displacement vectors are parallel to the orthographic 
projection vectors! Furthermore, if the net axis is aligned 
perpendicular to the ac-plane, the axis and great circle 
representing a tilt of _+to define the ellipsoid's circular 
sections before and after deformation. To determine the 
deformed state of an arbitrary initial plane (Skjernaa 
1980) its lines of intersection with the circular sections 
should be noted. One such line will lie in the shear plane 
and be unaffected by the deformation. The other will 
simply move from being represented by a point on the 
back hemisphere to a congruent position on the front 
hemisphere or vice versa (Fig. 24b). The deformed 
plane is fitted to these two deformed lines. To determine 
the deformed state of an arbitrary initial line we draw the 
great circle containing it and the c-axis and the great 
circle containing it and the a-axis. After deformation 
these two planes intersect in the direction of the required 
deformed line (Fig. 24c). It is noticed that the attitudes 
of all lines converge on the a-axis. Poles to deformed 
planes act in an inverse manner (Owens 1973), converg- 
ing on the c-axis. By applying equal increments of simple 
shear to a grid of lines or poles, a net may be constructed 
which will permit rapid analysis of the effects of simple 
shear upon fabric elements (see also Ramsay 1980, 
Skjernaa 1980, Treagus & Treagus 1981). 

Orthographic analysis of sub-simple and super-simple 
shear deformations in three dimensions may be 
approached similarly, by aligning the net axis with the 
minimax stretch and recording the attitudes of the circu- 
lar sections before and after deformation. 

Additive decomposition 

The deformation tensor may be decomposed into a 
symmetric and skew-symmetric part as follows, 

D = g + l~ (59) 

where l~ is what Truesdell & Toupin termed the mean 
rotation tensor of Cauchy and Novozhilov (Truesdell & 
Toupin 1960, p. 275) and S is here termed the additional 
stretch. Ramsay (1967, p. 124) wrongly suggested that 
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Fig. 23. Orthographic construction for three dimensional deformation (hand-drawn). Solid arcs were initially vertical-north 
and vertical-east. X and Y are eigenvectors of the left stretch tensor. 
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~ b  

0 

Fig. 24. Orthographic construction for simple shear in three dimensions. (a) Shear plane is horizontal and a is directed 
towards the viewer above the shear plane. The great circles shown are the circular sections of the deformation ellipsoid. (b) 
Determination of the deformation of an arbitrary plane (light arc dashed on back hemisphere). The deformed plane is shown 
bold. (c) Determination of the deformation of an arbitrary line by considering it as the line of intersection of two planes, one 

containing c, the other containing a. 

was analogous to S. S may be further subdivided as 
follows 

= I + 1~, (60) 

where 1~ is the elongation tensor of Truesdell & Toupin 
(1960, p. 266). The tensor 1~ is best understood from the 
special case where the elongation tensor is void (Fig. 
25a) so that 

D = I + 1~. (61) 

Clearly the effect of this deformation is to rotate the 
initial unit square and magnify it isotropically (a two 
dimensional view suffices). Therefore, [i  should logically 
be called a magnified rigid displacement tensor, since its 
column vectors are the displacement vectors of the 
reference axes. The effects of the additional stretch 
tensor S must be added to the magnifying effects of 1~. 
Therefore, S is coaxial with S but produces different 
principal stretch ratios. Prior to the invention of off-axis 
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Fig. 25. (a) The effect of the tensor 1~ upon I in the absence of any elongation I~, see text. (b) Geometric interpretation of 
additive decomposition. Bold arrows represent the column vectors of 1~. The order of application of tensors is immaterial. 
(c) Mohr construction for additive decomposition, One column vector of each tensor in (b) has been rotated through 90 ° in 

accordance with the 'rule-of-thumb' (see text). 

M o h r  circles, equa t ion  (59) p rov ided  the s implest  
m e t h o d  of  calculat ing the ro ta t iona l  c o m p o n e n t  of  
de fo rma t ion .  

A geomet r i c  in t e rp re ta t ion  of  addi t ive decompos i t i on  
is p re sen ted  in Fig. 25(b).  App ly ing  the ru le -o f - thumb 
for  the  cons t ruc t ion  of  M o h r  circles to this figure yields 
the M o h r  cons t ruc t ion  for  addi t ive decompos i t i on  (Fig. 

25c) (see also P rage r  1961, p. 69, Rob in  1977, Lis ter  & 
Wil l iams 1983, Means  this issue).  

Tensors related to the deformation tensor 

In the case of  i r ro ta t ional  de fo rma t ion ,  we def ined the 
quadra t ic  s t re tch tensor  
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C = S 2. (62) 

The symbol on the right has meaning only for a symmet- 
ric tensor. For asymmetric tensors representing rota- 
tional states of deformation, there are two ways of 
'squaring' 

(~ = D D  t 

= S R R t S  t 

= S2 (63) 

and 

= D t D  

= S t S R S  

= $2. (64) 

These left and right quadratic stretch tensors are com- 
monly called Finger's and Green's tensors (e.g. Malvern 
1969, Fung 1977). Similarly, we may take the product 
moments of the reciprocal deformation tensor D- l, 

= D - 1 D - t  

= ( D t D )  - l  

= C-~ (65) 

and 

i: = D - t D  -1 

= ( O D t )  - l  

= C-1. (66) 

These left and right reciprocal quadratic stretch tensors 
are commonly called Piola's and Cauchy's, respectively. 
Confusion is avoided if one remembers the tensor rule: 
the reciprocal o f  a right tensor is a left reciprocal tensor, 
and vice versa. 

By way of illustration, consider again the two-dimen- 
sional simple shear 

The reciprocal tensor is 

Finger's tensor is 

( ~ = [ 1 + y 2  1] Y • (69) 

Green's tensor is 

C =  1+,,/2 " 

Piola's tensor is 

c =  [ 1 +  y2-y - 1 ] "  (71) 

Cauchy's tensor is 

i : = [  l y  1-Y+y2]" (72) 

The function of the above set of four tensors is to isolate 
the irrotational component of deformation in three 

dimensions; the rotational component follows from 
equation (46). 

Triple decomposition 

The polar or additive decomposition of deformation is 
unsatisfactory in practice because it is extremely difficult 
to form a real concept of the magnitude, k-value and 
orientation of a deformation from such components 
except in special cases. The following triple decomposi- 
tion provides results in easily readable format. 

Given the deformation tensor D, Finger's tensor (~ is 
first formed using equation (63). Its eigenvectors define 
the left (final) principal directions and its eigenvalues are 
the principal quadratic stretches. The eigenvalues are 
obtained first by solving the cubic characteristic equation 
of Finger's tensor 

A 3 -IA 2 + IIA - III = 0 (73) 

where I, II and III are the invariants of (~. The three 
solutions are 

I 2 ~/]7 _ 3II.cos 1 

[ 2~/(i 2 _-- ~]]-)3 + - ' 

i = 1,2, 3. (74) 

Equation (74) follows from Ramsay (1967, eqn. 4-8). 
By definition, when an eigenvector is premultiplied by 

its tensor, it is stretched but not rotated. The outcome is 
as if the eigenvector had been multiplied by a scalar, its 
eigenvalue. Having obtained the eigenvalues of (~ from 
equation (74), the corresponding eigenvectors 0 are 
obtained by solving 

(~0 = A0 (75) 

for each scalar component of 0 at a time, and for each 
eigenvalue. Since the eigenvalues of (~ are equal to those 
of (~ the eigenvectors of C follow by solving 

C0 =AO. (76) 

The set ofeigenvectors 0j. (j = 1, 2, 3) are placed in the 
columns of a tensor O and the set 0 i in the columns of the 
tensor 0 (equations (75) and (76) give the eigenvectors 
to within a scalar factor; therefore care must be taken to 
set the magnitude of each to unity). Finally, the principal 
stretches are placed in the columns of a diagonal tensor 
X, in corresponding order, for example, 

X = Y , (77) 
0 

where each principal stretch is the square root of the 
corresponding eigenvalue A. Now the deformation 
tensor D may be expressed as the product of three 
components, 

D = ( ) X O '  ( 7 8 )  
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where 0 t rotates the initial principal directions into the 
arbitrary reference frame, X stretches the reference 
directions and 0 rotates the reference directions into the 
final principal directions. Note that the rotational com- 
ponent  of deformation is given by 

R = O[~)t. (79) 

Equation (78) enables one to visualize immediately the 
intensity and k-value of a deformation,  but the attitude 
of the principal directions must be deciphered from the 
direction cosines. Furthermore,  there are 27 elements in 
the triple decomposition whereas only nine are indepen- 
dent. It is more meaningful to express the left and right 
principal directions in terms of their Euler angles, 
namely the strike and dip of the XY-plane and the pitch 
of the X-axis, o-, 6 and 0, respectively, 

~r = arctan (O13/O23) 
a = arccos (O33) 
ds = arcsin (O31/sin 6). (80) 

Now the deformation recorded by the tensor D may be 
summarized in a deformation matrix D* (not a tensor), 

D* = Y (81) 

Z 

where the left-hand column records the attitude of the 
final principal axes, the central column records the 
principal stretches and the right-hand column records 
the initial attitudes of the final principal axes. 

H E T E R O G E N E O U S  D E F O R M A T I O N  

Rank-3 tensors 

Hitherto we have employed rank-1 tensors (vectors) 
such as V and rank-2 tensors (tensors) such as V. A 
rank-3 tensor I /may be thought of as a row matrix, each 
element of which is itself a tensor, 

V =  [ Vt V2 V31. (82) 

A rank-3 tensor transforms an input vector into an 
output tensor. If the input vector is the position vector of 
a particular location in a heterogeneous tensor field, 
then the corresponding output tensor may describe the 
state of the field at that location, provided the field is 
sufficiently simple and continuous to be described by the 
rank-3 tensor. Note that a zero input vector yields a zero 
output tensor regardless of the values in the rank-3 
tensor. Therefore ,  rank-3 tensors are suitable only for 
the description of tensor fields which are zero-valued at 
the origin. 

Heterogeneous displacement fields 

At any point in a heterogeneous deformation field, 
the state of deformation may be factored into parts here 
termed the inhomogeneous part, which generally varies 
from location to location and an additional homo- 

Fig. 26. A heterogeneous deformation field produced by application of 
rank-3 tensor algebra as discussed in the text. Only the part of the field 
below the horizon is shown as the rank-3 operation produces volume- 

gain above the surface. 

geneous deformation which is everywhere equal to the 
state of deformation at the origin, and which is super- 
imposed on (i.e. premultiplies) the inhomogeneous part. 
This factorization is entirely arbitrary and dependent  on 
the choice of origin. 

The inhomogeneous part of a heterogeneous defor- 
mation field as defined above may be further subdivided 
at any point into the sum of an identity tensor I and a 
displacement tensor, the latter being zero-valued at the 
origin, 

O = U + I. (83) 

Let U1, U2 and U3 be the displacement tensors at the 
locations 11, I~ and/3, respectively. Then,  if the displace- 
ment state gradients are constants, the state of displace- 
ment U at an arbitrary location P is given by 

U = [U1 U2 U3]P. (84) 

The deformation state is then given by DA(u + I), 
where D A is the additional homogeneous deformation. 

The use of rank-3 tensors for the description of 
heterogeneous states of deformation does not appear to 
have been proposed before,  although Hobbs (1971) has 
made analogous use of rank-2 tensors with variable 
elements. The method proposed here is preferred 
because the true 'displacement gradients' are displayed 
in the rank-3 tensor array and because common geologi- 
cal strain patterns may be described by very simple 
rank-3 tensors. For example, the rank-3 tensor 

E 00 000  00 
0 0 0 0 0 0 0 

0 0 0 0 0 0 0 - 

produces a field of differential compaction (Fig. 26), 
when north-east-down is the chosen reference frame. 
Displacement state gradients are zero in the horizon and 
constant in the vertical direction. Volume expansion is 
recorded above the horizon while infinite compaction is 
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Fig. 27. A zone of heterogeneous simple shear produced by the rank-3 
tensor discussed in the text. 

"XY-plane of  the deformation ellipsoid . . ." is so well 
established in the geological  literature that an attempt to 
substitute "12-plane . . ." would certainly fail. 

Part II of  this paper will deal with the practical applica- 
tions of  the above  theory to rocks. 
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recorded at unit depth, so that only a limited range of 
depths are geologically realistic. This range may be 
changed by changing the value of the non-zero element.  

As a second example, the rank-3 tensor 

i 00 000 0011 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

produces a zone of heterogeneous simple shear (Fig. 
27), when substituted for U in equation (84). In both of 
these examples, the output  displacement tensor corre- 
sponding to each input position vector must be added to 
identity tensor and a rigid translation must be added in 
order  to achieve the final state. The translational compo- 
nent must be calculated independently,  using, for exam- 
ple the compatibility conditions. 

C O N C L U S I O N S  

I have adopted a spatial-geometric approach to the 
mathematical specification of geological strain patterns. 
The geometric concepts of the stress and deformation 
ellipsoids are well established in structural geology. 
However ,  an ellipsoidal surface may be associated with 
every tensor. The spatial-geometric approach is greatly 
facilitated by the use of graphic facilities attached to 
digital computers but is also suitable for use on location 
in the field with the aid of an orthographic orientation 
net. 

The basic orthographic construction in two dimen- 
sions is similar to the operation of Tissot's indicatrix in 
cartography. It also resembles the constructions in Fig. 
7.3 of Means (1976) and Hobbs etal. (1976), fig. 1.5. It is 
easily extended to three dimensions and is applicable to 
rotational deformations. 

The method of formulating tensors and the notation 
used in this paper  is logical and internally consistent. 
Some readers may have misgivings about the use of 1-2-3 
for general reference axes and the preservation of X-Y-Z 
for the principal axes. X - Y - Z  are often used in con- 
tinuum mechanics as subscripts denoting arbitrary 
reference axes in the initial state. However  the phrase 
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